
Strong Typing 1
ID: 318-BSI | Version: 6 | Date: 11/14/08 4:55:38 PM

Strong Typing
Robert C. Seacord, Software Engineering Institute [vita1]

Copyright © 2005, 2008 Pearson Education, Inc.

2005-09-27; Updated 2008-10-06 L4 / D/P, L2

One way to provide better type checking is to provide better types. Using an unsigned type, for example, can
guarantee that a variable does not contain a negative value. However, this solution does not prevent overflow
or solve the general case.

Development Context
Integer operations

Technology Context
C, C++, IA-32, Win32, UNIX

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Integers in C and C++ are susceptible to overflow, sign, and truncation errors that can lead to exploitable
vulnerabilities.

Description
One way to provide better type checking is to provide better types. Using an unsigned type, for example, can
guarantee that a variable does not contain a negative value. However, this solution does not prevent overflow
or solve the general case.

Data abstractions can support data ranges in a way that standard and extended integer types cannot. Data
abstractions are possible in both C and C++, although C++ provides more support. For example, if an integer
was required to store the temperature of water in liquid form using the Fahrenheit scale, we could declare a
variable as follows:

unsigned char waterTemperature;

Using waterTemperature to represent an unsigned 8-bit value from 1–255 is sufficient; water ranges from
32 degrees Fahrenheit (freezing) to 212 degrees Fahrenheit (the boiling point). However, this type does not
prevent overflow and also allows for invalid values (that is, 1–31 and 213–255).

One solution is to create an abstract type in which waterTemperature is private and cannot be directly
accessed by the user. A user of this data abstraction can only access, update, or operate on this value
through public method calls. These methods must provide type safety by ensuring that the value of the
waterTemperature does not leave the valid range. If this is done properly, there is no possibility of an integer
type range error occurring.

This data abstraction is easy to write in C++ and C. A C programmer could specify create() and
destroy() methods instead of constructors and destructors but would not be able to redefine operators.
Inheritance and other features of C++ are not required to create usable data abstractions.

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html (Seacord, Robert C.)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Strong Typing 2
ID: 318-BSI | Version: 6 | Date: 11/14/08 4:55:38 PM

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

